


Loop Invariant (Topic 2)
Proving Correctness

Loop Invariant

Steps for Using a Loop Invariant

Insertion Sort - Loop Invariant Proof

Simple programs: logic (e.g. swap(a, b)  function)

Recursive programs: induction (e.g. factorial(n) )

Looping programs: loop invariant
Formal method to codify exactly what a loop does

A loop invariant is an assertion about the state of the code that is always true at the beginning
of a loop iteration

This must also describe the cumulative effect of the loop

1. Identify the loop invariant
What does the loop do?
What is the loop's cumulative effect?

2. Prove the loop invariant for the following code states
Initialization: does the loop invariant hold before the loop starts?

This is analogous to a base case

Maintenance: during the loop's execution
If the loop invariant holds for iteration , does it hold for iteration ?

This is analogous to an induction hypothesis

Termination #1: does the loop terminate eventually?
Termination #2: does the loop terminate with the correct loop invariant state, as intended?

The loop invariant needs to be precise and informative

Has two loop invariants: one for the "outer loop" and one for the "insert" loop

Outer loop: first  members of  are sorted
Inner while loop: two invariants: for iteration  (???)



Example Library
More examples: Week 2 Lecture Notes

Insertion sort: after iteration , the first  elements of the list will be sorted

Formal: At iteration , we have 

Proof:

Sum (linear implementation): after iteration , the  variable will contain the sum of the first
 elements

Max (linear implementation): after iteration , the  variable will contain the maximum of the
sublist 



Asymptotic Notation (Topic 3)
Analysis of algorithms becomes the analysis of functions

Breakdown of Big 

Given a function , what functions grow slower, faster, and at the same rate?

Big , big , and  of : sets of functions that grow in some way related to 

Theta - same rate

Big O - (as fast)? or slower than

Big Omega - (as fast)? or faster than

Asymptotic notation is purely mathematical; it describes the growth of functions in a math
context. It is borrowed into computer science because it is useful for expressing the time
complexity of algorithms

What can we use to create our functions
Polynomials: , , etc.
Logarithms: . Logs are base  by default in computer science

Exponents:  for , e.g. 

Factorial: 

Combinations of the above

Big O

 such that 

Essentially,  has the big O notation  if and only if, after a certain point,  does not
grow faster than  after normalizing away the coefficients

Note that statements like  are true (although )
To prove that a function is , we might list a  and  and then prove the "for all" statement

 and  are not unique

To prove  statements, we don't need to find the smallest possible  and 

However, the choices of these two values should show some understanding of the
algorithms, i.e. plugging in giant numbers, while technically (probably) correct, isn't a "valid"
proof in this course. Justification must be given

 is just an upper bound; it doesn't need to be tight



Polynomials

Big 

Big 

Little  and 

For  is , i.e., the  of a polynomial is  where  is the degree

of the polynomial

Big 

 such that 

Big  is a lower bound

After a certain point,  does not grow slower than 

Provides both upper and lower bounds for a function

 Big 
 such that 

Big  provides both bounds: functions in this set grow at the same rate as 

; it is the overlap of the upper and lower bounds

 is the set of functions that grow strictly slower than 

Formally, 

For every , there exists  such that for all 

We have 

 is the set of functions that grow strictly faster than 

Formally, 

For every , there exists  such that for all 



Useful Tips

Limits

Proving Non-membership

Properties of Big-O Notation

Logarithms Review

We have 

Little  and little  are the strict versions of big  and big 

, then 

L'Hopital's rules can be used to evaluate limits

Limit rules can't always be used; e.g. abstract functions and proving  is not 

Proving that a function is not  (or any other type) can be proven by contradiction, using
the formal definition of the set in question

Reflexivity: 
Additivity: 

Multiplicativity: 

Transitivity: 

We assume  means  in this course (and in cs in general)

For positive functions , 



Functions in Increasing order of Growth
Constant: 

Logarithmic: 

Linear: 
Linearithmic: 

Quadratic: 

Cubic: 

Exponential: 

Factorial: 

Double exponential: 



Divide and Conquer, Merge Sort (Topic 4)

Splitting up

Merge Sort

Recap of insertion sort: the "insert part is " and it's repeated  times in the loop, so insertion
sort is 

Recap three things to keep in mind with an algorithm: correctness (loop invariant), amount of
resources (running time), can we do better

Let the cost of sorting a list be .

Splitting the list in half and sorting each half is then 
Thus, for insertion sort, the cost for  is 

Since merge is (trivially) , this is better than just sorting the list

Merge implements the "splitting up" idea recursively by splitting the list in half, merge sorting
each half, and merging the halves together

The lists gets broken up into single pieces (divide), then merged together again (conquer)

mergeSort(Arr, low, high) {
if(low < high) {

let mid = (low + high)/2;  //integer (floor) division
mergeSort(Arr, low, mid);  //each works one half of Arr
mergeSort(Arr, mid + 1, high);
merge(Arr, low, mid, high) //merges the sublists
// this "merge" functions needs all the endpoints to know what to 

merge
}

}



Efficiency of Merge Sort

Solving Recurrences

The code yields the following recursive equation for the efficiency
 (each half getting sorted + merge)

This equation is a recurrence relation

In particular, 

Recurrence relations are functions defined in terms of themselves (recursively)
Recurrence relations must have a base case and (at least one) general case

To figure out what our recurrence relation should be in the first place, we count
Base case: number of primitive operations in base case
Coefficient of  term: number of recursive calls

 for : how many times input is divided

Constant term in recurrence: number of primitive operations in recursive case

For convenience, we assume the list has  items because we often have to use powers of
two in the recurrence

Proving that this is fine to assume involves showing the recurrence relation is non-
decreasing and that the upper bound of any  in between two powers of two is
asymptotically equivalent to the larger power



Iterated Substitution

Merge Sort Application

Recurrence Tree

We keep relacing the recursive term of the equation with its definition until it forms a pattern

This pattern can be used to prove the recurrence relation by induction

, so

 
Eventually, by writing this out to the base case using  and factoring, we get

Since , we have 

We have found , but not proven it. For that, we need induction. The induction proof follows
structurally from the recurrence relation

Draw a tree diagram of each recursive call
The structure of this tree can give insight into the equation that summarizes it

To pay attention to
How many nodes are in each layer
How many layers there are



Guess and Test

Master Theorem

Then  has the following bounds

At the end, get an equation for the tree by adding up the number of nodes in each layer. Then,
try to write that equation in terms of the function passed into 
Works best when illustrating particular instances of the algorithm being run

Make a guess for the recurrence relation, then just try to prove your guess by induction
If the proof succeeds, it was correct. Otherwise, how it fails may give insight into the correct
solution (inductive reasoning)

Should be a method of last resort

Provides a unifying method to solve (most) recurrences that occur when evaluating divide and
conquer algorithms

 Master Theorem
Let  and  be constants, and let  be a function. Let  be defined on non-
negative integers by the recurrence



Categorizing Recurrences (appendix)

If  for some  then 

If  for some  then 

If  for some constant  and if  for some constant 
and all sufficiently large , then 

Top heavy: most of the runtime is found in the initial call
For  (case 3 of master theorem)

Balanced: each level of the tree does about the same amount of work
For  (case 2 of master theorem)

Bottom heavy: most of the runtime comes from the base case (leaves)
For  (case 1 of master theorem)



Heaps, Priority Queue, HeapSort (Topic 5)

Heaps

Array Representation

Almost-Heaps and Max-Heapify

Recap: Insertion sort is  and Merge sort is 

A heap is a binary tree data structure, represented by an array, where the key of the child node is
smaller than that of its parent (max heap)

Max Heap Property: For every node , we have 

Thus, the root of the heap is the maximum value

Min heap: same definition, switch the inequalities from the max heap

Alternative definition: A heap is a binary tree where every the root of every subheap is the largest
value of the subheap

Heaps are implicit binary trees

The height of a heap is the number of edges on the longest root-leaf path
A heap with  keys has a height 

The first element of the array is the root; the next two elements are the second layer, the next
four are the third layer, etc.

The intermediate layers are always complete; a heap without the (possibly incomplete) leaf layer
is a binary tree

The leaf layer doesn't need to be complete

Array Indices for Heaps

An almost-heap is a heap where only the root of the heap (might) violate the max-heap property
The procedure Max-Heapify(A, i)  turns an almost-heap into a heap:



Running Time

Building a Heap

Procedure

Pseudocode

We find the running time of Max-Heapify  is , since it gets run once per layer of
the heap

We can also find this since  ??

1. Each leaf node is a key in and of itself, since it follows the max-heap property

2. Thus, the nodes on the second-bottom layer are almost-heaps, since both of their children are
the roots of heaps

We use Max-Heapify  to turn them into heaps

3. Now, the nodes on the third level are almost-heaps because we turned their children into heaps.
We can also Max-Heapify  this into heaps

4. Keep repeating this process recursively up the tree

5. The whole tree becomes a heap

// precondition: Tree rooted at A[i] is an almost-heap
// postcondition: Tree rooted at A[i] is a heap

lc = leftchild(i), rc = rightchild(i), largest = i;

//finds the largest child of A[i] (either left or right) 
if(lc <= heapsize(A) && A[lc] > A[largest]) {

largest = lc
} //else?
if(rc <= heapsize(A) && A[rc] > A[largest]) {

largest = rc
}

//if the root is not in the right spot, it switches it it with
//the largest child, then recursively calls Max-Heapify
//on that child's subheap
if(largest != i) {

swap(A[i], A[largest])
Max-Heapify(A, largest)

}



Running Time (loose)

Running Time (tight)

The procedure can be expressed using the following pseudocode

let i = floor(length(A)/2);

for (i downto 1) {
Max-Heapify(A, i)

}

Note that we simply perform Max-Heapify  on the first half of the array
Since this is where all the non-leaf nodes are stored (and the leaf notes are heaps already),
this works

The running time of Build-Max-Heap  is 

 is the number of times Max-Heapify(A, i)  is called

 is the running time we determined for Max-Heapify

Note that  is not tight
This assumes the worst case running time ( ) is the same for all the nodes; this
actually depends on their height



Priority Queues

Definition and Motivation

Heap Implementation

 is the worst case running time for max-heapify  on a tree with a root and two leaves (it's
constant)
To find the WC runtime of each layer, we take

We need to sum all of these to get the RT for the whole algorithm
Height: 

Base of tree ( ): at most 

Number of nodes: 

For an -element heap, the maximum number of elements of height  is 

So: 

We can use algebra to find that is this  (i.e. reduces to a constant times )

Another way to look at it: . Note that , which

is constant

An abstract data structure for maintaining a set  of elements, each of which has a key that
represents the priority of the element

An element with a given priority can be added

When an element is removed, it must be the element with the highest priority

Operations usually supported: initialize (keys) , maximum , exract maximum , increase
(key) , insert (key)

initialize (keys) : use build-max-heap  to structure the array into a heap
maximum : the maximum element is already at the top of the heap, i.e. . Simply return that

extract-maximum : return the max value from the top of the heap. Place the last element of the
heap at the top of the heap (i.e. reduce the heap size by 1, copy the value to ). Then run
max-heapify  to turn the resulting structure into a heap again and return the max.

This is  due to max-heapify

increase (key) : increase the value of the key. If the key is now larger than its parent, move it
up and check again. Stop when this is not the case or the key is at the top of the heap

Inverse of max-heapify

This is also 



Heapsort

Motivation and Implementation Sketch

Runtime

heap insert (key) : increase the size of the heap and add a key at the bottom (value can be
anything smaller than the intended key, e.g. ). Then, run increase  with the intended value

This is obviously  like increase

For decreasing a key, we can change the key and then call max-heapify  on the subheap where
the key is the root, since it will be an almost-heap

Heaps can be used to design a sorting algorithm: Heapsort
General idea

Build an array into a heap: 

 is the maximum, so should be at the least position

Switch  and  and decrease the heap size by , since  is now in the correct
position

max-heapify  the unsorted part of the array, i.e. , which is an almost-heap

Keep repeating these steps to fill positions , , etc.

We know build-max-heap  is 

Informal: we know running max-heapify  on each element of the array is 

Formal: , so we know that this process

is also 

Therefore, heapsort has a runtime of 



Quicksort, Sorting Lower Bound BST, Balanced BST,
Hash Table (Topic 6)
Quicksort

Pseudocode

Quicksort overview: Divide the array into two subarrays around a pivot such that everything
before the pivot is smaller than it and everything after it is larger. Then recursively quicksort each
half. Finally, each half is combined, which is trivial since quicksort is sorted in place

Uses the divide and conquer paradigm

QuickSort(A, p, r): 
// sorts A = [p ... r]
if(p < r) {

// A[q] is the pivot
// all elements before q are smaller, all after are larger
// note: partition both modifies A (side effect) AND returns q
q = Partition(A, p, r)
// recursive calls
QuickSort(A, p, q-1)
QuickSort(A, q+1, r)

}

// Partition subprocedure
Partition(A, p, r):

// last element of array being examined is picked as a pivot
pivot = A[r];
// "switch counter" (i is an index; counts up from start index)
i = p-1
for(j from p to r-1) { // counts up from start to second last element

// if current element is smaller than pivot, switch and increment 
counter

if(A[j] <= pivot) {
i = i+1;
swap(A[i], A[j])

}
}
// switch last element and element in the "pivot spot", as determined by
// incrementing i
// note that we compared with r when switching and incrementing, so this
// is why we can simply swap these and know the list is in the right form



Partition Explanation

Runtime

Notes (meta)

Recursion Tree

Recurrence

Worst-case

The pivot is 

Looks at the keys of the array from  to 

 is the current element we are considering
 is the index of the last known element that is smaller than or equal to the pivot

Quicksort is useful to analyze because is provides a good model for analyzing algorithms, as well
as because it shows how useful randomization can be

The recursion tree for quicksort isn't deterministic; it will be of different depth and balance
depending on the distribution of the input

To form the recursion tree, the root is the pivot and the children are the first and second recursive
calls

Since the keys in the left subtree are less than the pivot and those on the right are larger,
the quicksort recursion tree is a binary search tree

For ,  since there is only a pivot, so the algorithm takes constant time
Otherwise, we have 

 is the recursive call for the list less than the pivot; we say is has  elements since we
won't know how many it will have

Thus, the other recursive call is  since the pivot isn't part of it

 since the pivot is compared with every other key

swap(A[i+1], A[r])
return i+1



Best-case

Average Case

(More) Formal Analysis

Storage

Notice that when both recursive subarrays are non-empty, there are  comparisons in the
level below the one with  comparisons: 
However, when one is empty, there are  key comparisons, since one side is the  case
of the recurrence

Solving the recurrence (using the worst-case insight below) by iterated substitution shows that

Note that the absolute worst-case running time is when the list is sorted in reverse-order, since
the pivot moves one spot each time and always leaves an empty subarray

In this case, quicksort devolves into insertion sort

The best case for quicksort is when the tree is as balanced as possible, i.e. the list is sorted in
ascending order

Every partition is a bipartition: the array is always split in half

For this case, the recurrence it , since 

Using the master theorem shows that this 

However, this running time is common because it happens any time the split of the array is a
constant proportion, even if it's not 

I.e.  for  can be shown to lead to

We assume each possible input has equal probability, i.e. ; each

 has probability  of being chosen

So, 

since each value of  has equal probability . This reduces to , which

implies  somehow?



Random Quicksort

Notes on Randomness

Lower Bound for Sorting

Unlike mergesort, quicksort sorts in place: no extra space is required to perform the sorting
algorithm

Mergesort uses  extra space since a new list worth of space is required

Quicksort only uses  since the amount of space required is the same, no matter the
size of the list

Instead of using Partition , we invoke a function RandomPartition  that randomly chooses an
integer  and swaps  with , then calls Partition(A, p, r)

This effectively chooses a random pivot from the list

This essentially guarantees the expected worst-case running time to be 

For average case analysis, we make an assumption about the input, i.e. that any instance is
equally probable

This may not hold in an actual program; we are making assumptions that input is random,
which we can't guarantee

For randomized algorithms though, we can guarantee the randomness will occur because it is
baked into the algorithm itself

So, since the random case always happens, we can use it when conducting worst-case
analyses

In a deterministic algorithm, there is no randomness, so the same output always yields the
same calculations

In a randomized algorithm, the same input always maps to the same output, but the
calculations involved may be different

These are often implemented to improve the worst-case performance

Lower bound for a specific problem: ,
i.e. for every possible algorithm that solves the problem, the runtime will be at least the lower
bound

We prove lower bounds by constructing ("difficult") instances of a problem that have the
longest runtimes

All the algorithms we've looked at so far are . It turns out that no sorting algorithm
has a lower bound less than 

I.e. 



Useful Trees

Recursion Tree

Decision Tree

Showing a Sorting LB with Decision Trees

Dynamic Sizes

Binary Search Trees (BSTs)

Each node corresponds to a recursive call; the whole tree corresponds to an algorithm execution
Describes an algorithm execution for one particular input by showing each recursive call

Why it's helpful: the sum of the operations over all the nodes is the total number of operations for
the algorithm execution

Each node corresponds to an algorithm decision

Describes the algorithm execution for all possible inputs by showing all possible decisions
A single algorithm execution corresponds to a root-to-leaf path

Why it's helpful: sum of the numbers of operations over nodes on one path is corresponds to a
particular instance of the algorithm; all instances (i.e. every possible result) exist in the tree

Comparison-based sorting algorithms have binary decision trees

There are at least  leaves, which correspond to the  sorted arrays of size  that can possibly
exist
Thus, the tree must have at least  levels, since this is the minimum number of levels in a
binary tree with  nodes

So, a longest root to leaf path is at least 
Therefore, in the worst case, an algorithm makes  comparisons

So far, everything we've been sorting on is of static size

However, it's also worth studying algorithms and data structures in the dynamic case, i.e. when
the size of the array is not fixed

Options:
Use a data structure that does insertion and deletion quickly (array, list, hash table) and run
a sorting algorithm when required

Use a data structure that keeps elements sorted (e.g. BST)



Tree Terms

Binary Search Tree Definition

Binary Tree Operations

AVL Trees (Balancing BSTs)

AVL Rotations

A rooted tree is a data structure where each child has a unique and distinct pointer to another
rooted tree

It has a single root node

Descendant:  is a descendant of  if a path of child pointers from  to  exists

Leaf: a node with no children
Binary rooted tree: A rooted tree where each node has at most two children

Height: number of edges in the longest root-leaf path in the tree

Layer< >: the set of nodes with distance  from the root

Binary Search Tree: a rooted binary tree where every node  has the following properties
All keys in the left subtree of  are smaller than 's key

All keys in the right subtree of  are larger then 's key

A BST with  nodes may have heights of up to  in the worst case

Search: we check if our key is equal to that of the node we are checking. If it's smaller, we
recurse on the left subtree, otherwise the right.

Runtime: , since this is executed once for each layer of the tree

Delete: if the node is a leaf, we remove it. Otherwise, we take the largest element of the "smaller
than" subtree and make that the node node at the location we are deleting from

Also  runtime for the same reason

Outputting sorted sequence: Recursively to this to left subtree, print the current key,
recursively do this to the right subtree

 because, by definition, we print each element once

Note that if a binary tree is "balanced",  so both search and insert/delete are ,
which overall is better than both arrays and linked lists, which is massively helpful

So, we need a way to keep BSTs balanced



AVL Tree Definition

Maintaining the AVL Property

Hash Tables

Key operation: rotations

Right-rotate: the old root becomes the right child of the new root

Left-rotate: the old root becomes the left child of the new root

Both of these are trivially 

An AVL tree is a BST where, for any node, we have , I.e. the heights of both
subtrees are as close as possible

An AVL tree with height  has at least  nodes
This can be derived from the AVL tree property above, assuming that (WLOG) each right
subtree has one more layer than the left one

Four cases for balancing the BST: single rotation (cases 1 and 2), double rotation (cases 1 and
2)
more detail here

Essentially, if a subtree is unbalanced, there is a way (one of the four) to reorder the nodes so
that it is indeed balanced

AVL trees have  search and insert/delete, but we can do better for average-case; we can
get both as low as  with hash tables



Hash Table Definition

Hash Table Runtime

Types of Hashing

We have an array  of size  and some hash function , where  is the
set of keys we wish to store. When inserted, each key  is stored at 

Collisions (I.e. multiple keys mapping to the same number) are resolved by chaining the
keys together in a doubly linked list starting at the space in  where they are mapped

Insertion, search, and removal are all done by finding the corresponding address in the table,
going to it, then searching through the linked list

Insert and Delete can both be done in  with doubly linked lists

The running time of search is dominated by the longest chained list; in the worst case, it is ,
since all the keys can theoretically be mapped to the same location

Define  as the average number of elements per slot in the hash table (load factor)

If hashing Is uniform (I.e. any slot is equally likely), then the load factor is constant; so search is
 since it is dominated by the load factor
E.g. an unsuccessful search takes 

Universal hashing: a set of hash functions is universal if the probability of any two functions
hashing to the same value is less than 

If we randomize the hash functions at runtime, any sequence of operations generally has a good
average-case runtime

Example set of uniform hash functions: for a random prime  and random  from
, we define 



Greedy Methods (Topic 7)
Greedy Algorithms

Optimization Problems

Proof Strategy

Properties of Greedy Solutions

Greedy Algorithm Paradigm

Always make choices that look best at the current step. These choices are final and cannot be
changed later

Useful for optimization problems, where we are trying maximize or minimize something

Greedy algorithms are generally easy to come up with, but hard to prove correct (I.e. optimal)

General statement: Choose some  (decision variable) where  (feasible region) such
that  (objective function) is minimized

 is the optimal decision and  is the optimal value
Are useful in transportation, logistics, internet infrastructure, economics, ML (e.g. supervised
learning, deep learning, reinforcement learning)
Optimal solutions may be unique or non-unique (I.e. multiple instance of an optimal solution)

We want to show that each greedy choice can replace some portion of the optimal solution, such
that this altered new solution is still optimal

This is done one item at a time

unified description here

Substitution property: Any optimal decision can be altered to become our greedy choices
without changing its optimality (also called the greedy choice property in CLRS)

We can prove correctness by showing this holds

Optimal Substructure Property: the optimal solution contains optimal solutions to subproblems
that look like the original problem

This property is key to dynamic programming



Fractional Knapsack Problem

Intuition/Proof

Job Scheduling Problem

For greedy algorithms, the substructure is the rest of the choices we have to make (?)

Greedy algorithms stay ahead: after each step, their solution is at least as good as any other
algorithm's
Greedy algorithms make a myopic (locally optimal) sequence of decisions

Suppose we have a set  of  items, each with value  and weight . We have a knapsack
(bag) which has a weight capacity . We can pick each item at a fraction, I.e. we can pick as
much of it as we want up to the amount of it we have. What is the maximum profit we can carry
in the knapsack?

Formally, we wish to maximize  where  and  for all 

Greedy approach: start by picking the item with the highest value/weight ratio one at a time
Implementation: we must sort the set of items  by this ratio ( )

The first choice is saturated if we have run out of choices for it
We always know. by definition, that  for any 

We proceed by showing the first item is saturated, then the second, etc.

Claim 1: there is an optimal solution where item 1 is saturated. For the optimal solution, either
Item 1 is indeed saturated, so we are done
Item 1 is not saturated.

Case 1: knapsack is not full (I.e. we are able to put some of it in the knapsack). So,
since item 1 is the most valuable, the solution where we take as much of it as we can
cannot be smaller than the optimal solution

Case 2: Knapsack is full. Then, there must be some of the item in there because
replacing the space it takes with a different (less valuable) item would decrease the
cost

add formal math stuff here later

This argument can be repeated for each most valuable item (I.e. when the most valuable item is
used up, we apply to the second most valuable, etc)

Instance example: we have a bunch of classes at specific times. How can we schedule the
classes such that the least number of rooms as possible are used?

Formal: we have a set  of  jobs, with start and finish times  and 



Activity Selection

ESTF: Earliest-start-time-first
First, we sort all the jobs by start time

Then, we start adding jobs in order, each on a new machine
Each time a job gets added, its end-time gets added to a min-heap, so the closest end time
is always on top. Before a job gets added to a new machine, we check the min-heap to see
if the closest job has finished. If so, we start the new job on that machine instead (and add
and remove from the min heap appropriately)

ESTF can be shown to be optimal by considering that we can always find a set of  jobs running
simultaneously if  processors are being used. Thus, it is impossible for the jobs to be scheduled
on  processors (and thus it is optimal).

Instance example: the are various classes happening throughout the day. What is the largest
subset of non-conflicting classes that one student can fully attend.

ESTF won't work here, nor will shortest first

Solution: Earliest finish time first (EFTF)

Optimality proof: we show our decisions are correct by showing that there is an optimum
schedule that contains everything we have selected (so far) and has omitted everything we have
decided to omit (so far)

I.e. there is an optimal schedule that looks like what our algorithms is doing so far
This is proven with induction



Divide-and-Conquer Revisited (Topic 8)

Exponentiation

Karatsuba's Algorithm for Large Integer Multiplication

For many algorithms, applying divide and conquer is the first step. The next is to figure out how
to reduce the number of recursive calls

The coefficient of  has large performance implications

For , we wish to compute 
This has many practical applications for large , e.g. cryptography

Naive approach I: use a for-loop to multiply  by itself  times ( )

Naive approach II: just divide and conquer by splitting the problem in half each time (also )
Improvement: for even , we can reduce the number of recursive calls by saving the result of

 and squaring it. For odd , we simply call  so that we have an even
recursive call next time

Note: when I tried to derive this algorithm on the test (yikes), it didn't occur to me that I was
making the same recursive call twice when I could just square it

We can show that this ends up being  since we end up making at most one recursive call
per things, and since each (even) recursive call divides the problem in half (and there is at most
one odd call before it), the problem gets divided in half each time*

Regular "elementary school" multiplication takes 

Naive divide and conquer: we take a four digit number and express it as four two digit
multiplications, where we multiply by powers of the base and perform remaining multiplications
recursively

This is also , since there are four recursive calls with inputs that are half as big as the
original

Karatsuba is like divide and conquer, but is slightly more efficient with its recursive calls
We have  and 

So, 

Let  and , and 

Notice that , which requires one less multiplication to compute
So, if we compute and then store , , and , then calculate , we perform the
recursive step in 3 multiplications instead of 4

So, the run time is 



Strassen Matrix Multiplication

Summary

The  multiplications can be accomplished with  shifts and we assume addition is , so
the  term does not dominate

Regular algorithm: traverse each row of  and each column of  (  choices) and compute the
 product for each coordinate, so 

Naive divide and conquer: divide each matrix into four quadrants, then perform the required
matrix multiplication and addition. Turns out that this is also 

Strassen: found 7 matrices (that each take one matrix multiplication to calculate) that can be
combined together with multiplication and subtraction in order to form the desired matrix product

So, the runtime is 

When writing divide and conquer algorithms, we should look for opportunities to reduce the
number of recursive calls at each step, as this will improve performance significantly as inputs
get larger
These often come at the expense of non-recursive operations

In particular, see if any of the recursive calls can be computed into one of the other recursive
calls without using constant time operations (or any operation more efficient than the recursive
option)



Dynamic Programming (Topic 9)

Divide and Conquer vs. DP

Example: Fibonacci

Properties of DP Solutions

Dynamic Programming Paradigm

Problems are solved recursively, but the results of individual recursive calls are saved and may
be re-used

Divide and Conquer: We take a big problem, divide it into multiple subproblems, solve those,
then re-integrate those into the full solution

Each of these subproblems are independent of each other, and each subproblem relates
only to its parent

For dynamic programming, there may be more complex (but still bottom-up) relationships
between subproblems

Subproblems may be shared, i.e. have multiple parents
They may also have varying numbers of children

Regular algorithm makes wayyyyy too many recursive calls with values that have been
computed before

DP approach: each time we calculate a value, add it to an array like . Then, when
evaluating a (likely recursive) fib  call, retrieve the value from the array if it's there, instead of
calculating it.

This is  time and space, instead of  time

Overlapping subproblems: different branches of recursive calls complete each other's work
(repetition)

Optimal substructure: the optimal solution for the overarching problem is dependant only on
the optimal solutions for subproblems (dependency)

The subproblems should be able to be evaluated in polynomial time

Types of ways to go about writing a DP solution



General Steps for DP

Integral Knapsack Problem

Naive Recursive Solution

Tabulation: Bottom-up approach to DP algorithms. Before solving a subproblem, we must
solve its subproblems first
Memoization: Top-down approach to DP (can be refactored into this)

Informal: the running time is (or is clearly derived from) the number of possible filled spaces in
the lookup table

1. Find a recurrence relation for the problem

2. Check if the recurrence ever makes any of the same calls, and if there are reasonable amount of
different ones

What is the dependency among subproblems

3. Describe array (or I guess any data structure) of values that you wish to compute. Each value will
be the result of a specific recursive call

4. Fill the array from the bottom up* (backward induction). Solutions to subproblems will be looked
up from the array instead of being computed themselves

Bottom up: loop over all the values up to the one we want, and fill in the array slot for each
value looped over. This means we don't have to check if something is in the array because
we know it will be

Can also be done top-down (i.e. checking and calculating if it's not there)

Like the fractional knapsack problem, but fractions of items can be taken

For each item , we calculate the following recursive calls
Take the item: recursive knapsack on  and the set of items without 

Leave the item: recursive knapsack on  and the set of items without 



Applying DP

Better Solution: Working Bottom-up

Rod Cutting Problem

Recurrence relation (formal):

First term in the  is not choosing the item, the second one is choosing it

There are indeed repeated subproblems; they exist when the same remaining space is
calculated with the same set of available items

So, we can create a table with "remaining capacity" on one axis and "first  items" on the other,
since items are always evaluated in the same order

This contains all possible sets of items that we could have looked at already

Any possible recursive call we can make has a space in the table, so we can look to see if
anything is there first and only evaluate a recursive call if there isn't anything
The overall runtime is 

This is the number of spaces in our table; this is the most amount of computations that need
to be done (the individual check for each is )

We can fill in our table in the following way before we even run our algorithm

If we've looked at  items so far, our optimal profit for those is obviously , no matter our
remaining capacity, so we can fill the whole first row with s

Next row (1): anything below the weight of our first item will take the value from the previous row
(in this case 0), because there must be enough capacity left to hold it. Everything else in the row
will be the item in the previous row plus the value of the item

Next row (2): anything below the weight of the third item is still 0. If the weight of the third item is
, we look at the item  cells to the left in the row above to figure out what to do. If we can add

the current item to the knapsack, we do (and get the new total value). Otherwise, the value of a
cell is the same as the cell above it

Idea: for row  (i.e. first  items looked at), if the th item was height , we look  cells to the left
in row . If that cell exists (not off the side of the table) and the sum of that cell and the
current value is larger than the value in the cell above the one we look at, we put that sum in the
cell (corresponds to putting that item in the knapsack). Otherwise, we put the value above in
there (corresponds to not putting it in the knapsack)

We have a length of rod to sell, and the price of a piece of length  is . How do we maximize
the profit we can get by selling our rod?



Longest Common Subsequences

Naive solution: try all possible combinations ( ) since we have  places in the rod that
can be either cut or not
Recursive solution: we cut the rod once (  different ways to do this). The solution is the max
of the sum of the optimal ways to cut each of the two subrods (this is called recursively)

DP solution: we keep track of the optimal value of each length in an array, and add to it each time
we calculate a new value.

Bottom up (tabulated): we loop  from 1 to  and calculate the optimal value for length 
each time.

Top-down (memoized, requires helper function): essentially: we make an array to store
values and call the function recursively, looping over every length possible with one cut.

Runtime: , since we have to fill  cells and that calculation is  itself

Subsequence: any subset (not necessarily contiguous) of a sequence/array

Recurrence:

First two cases: we skip a character (first , second )

Last case: we match a character

Table: one axis is all the possible "states of consideration" of the first string (the contiguous
blocks of 1, 2, 3, etc characters that we have examined, starting from the first one), the other axis
is that of the second string

Then our "recurrence" becomes 

The DP solutions (top-down and bottom-up) use this table to stop repeated calculations

Runtime is  because we have to fill the table (  cells)



Graphs, BFS, DFS (Topic 10)
Graph Terms

Paths and Cycles

Nodes/vertices : a set of  elements with unique identifiers, usually numbers in 

Edges : set of unordered or ordered (directional) connections between nodes in a graph
Undirected: each edge is a set of two nodes 

Directed: each edge is. an ordered pair of two nodes 

Graph : 
Size of graph: 

Adjacent: two nodes that share an edge or two edges that link the same node

Incident: a node that is part of an edge
Loop: an edge that connects a node to itself

Degree (of a node): number of edges connected to that node
For directed graphs: in-degree and out-degree

Path: sequence of nodes  such that there exist  edges where where  connects to

Simple path: path where all nodes are unique (has length )

Cycle: a path that ends on the same node it starts on (i.e. where )
Simple cycle is also defined

Two nodes are connected if there exists a path between them
A graph  is connected if every two nodes are connected
Connectivity is an equivalence relation

Biconnection: each pair of nodes are connected two node-disjoint paths

Reachable: path from  to  exists

Strongly connected: paths from  to  and path from  to  both exist (also an equivalence
relation)

Acyclic: a graph that doesn't contain any cycles

Forest: an acyclic graph
Tree: a connected, acyclic graph

Trees are maximal acyclic graphs: adding any other edge would create a cycle

Trees are minimal connected graphs: removing any edge would disconnect the graph

Trees with  nodes have  edges
Spanning tree: a subgraph  of  such that  is a tree



Graph Representations

Graph Traversals

Node Classification

Generally, we color a node grey when we visit it for the first time, then color it black when we have
exhausted (searched) all of its adjacencies. We ignore black nodes for further searches.

BFS (Breadth-first search)
Nodes are always visited in layer order

Pseudocode

Nodes are stored in an array (so accessing their attributes is )

Edges can be represented in multiple ways
Adjacency matrix: an  matrix where the th entry contains  if an edge between 
and  exists, or  otherwise

Symmetric about diagonal if the graph is undirected

Space complexity: 

Adjacency list: each node contains an array of the edges that are adjacent to it
Space complexity:  (  nodes,  edges)

Goal: visit all of the vertices in a graph
Breadth-first: Each layer is traversed and exhausted before the next one starts

Depth-first: go as deep in the layers as possible before backtracking

White: a node that has not been visited or seen at all
Grey: a node that is currently being worked on, i.e. not all the paths out have been explored

Black: a node whose paths have been completely checked

// G is a graph
// s is the starting vertex

void BFS(G, s)

for each vertex v in the graph, do
v.color = "WHITE";
v.dist = Infinity;



Explanation

BFS Trees

Initialize all nodes to white color (unvisited), infinite distance, no predecessor
Initialize a queue (first in, first out)

First node: set to grey (examining), distance to 0 (0 distance from starting node), add to queue

As long as the queue isn't empty
Get node from the queue (first one not looked at)
If it is white (hasn't been examined), for each of its neighbours

set to grey

set distance to root distance +1
set predecessor to root

add it to the queue

Then set root to black, since we have examined all the neighbours

Once the queue is empty, we have reached all the nodes

The algorithm creates a BFSs tree rooted at ; the edges of this tree are the edges that were
travelled along when creating the BFS tree.

v.predec = NULL;

Initialize a queue Q

// start examining s because it is the first node
// add it to the queue and change color to grey
s.color = "GREY"
s.dist = 0
enqueue(Q, s)

while(Q !== []) {
u = dequeue(Q)    // remove from the queue
for each neighbour v of u {

if(v.color = "WHITE") {
v.color = "GREY"
v.dist = u.dist + 1
v.predec = u
enqueue(Q, v)   // add v to the Queue

}
}
u.color = BLACK   // done visiting the neighbours of u

}



Properties

Running time

BFS for Disconnected Graphs

DFS (Depth-first Search)

Pseudocode

Each node reachable from the root is queued (turned grey) and dequeued (turned black) exactly
once.

The path created by the predecessor function is the shortest leaf → root path (this is proven by
induction)

Each vertex is enqueued exactly once (WHITE → GREY) and dequeued exactly once (GREY →
BLACK)

Adjacency List: , since we can just look that the list for each node

Adjacency Matrix: , since we must look at every entry in the  matrix

Note: for very sparse trees, we may have , so adjacency matrices may work
better for these

Space complexity:  for both representations

Parts of the graph disconnected from the starting node will never get visited!
Solution: loop through all the nodes and run BFS on it again if it's white.

Instead of a BFS tree, we will get a BFS forest

We go as deep as possible

Keep visiting the first node of each neighbour until we can't, either because there are no
neighbours, or because we have visited them all already

Then, we backtrack and look at the next neighbour node

int time  // global

void DFS(G)

// initialize graph
for each vertex v

v.color = "WHITE"



Explanation

Running Time

For each node, we call DFS-visit recursively
Time gets incremented every time we visit a node

dtime  for a node: start time (first time evaluated, → GREY)
ftime  for a node: finish time (last time evaluated, → BLACK)

Same as BFS (depends on the data structure used to represent the graph):  for the
adjacency list and  for the adjacency matrix

v.predec = NULL

time = 0

// visit all unvisited nodes
for each vertex v

if(v.color = "WHITE") {
DFS-visit(G, v)

}

void DFS-visit(G, s)

// examining "first" node
s.color = "GREY"
time = time + 1
s.dtime = time

for each u, neighbour of s {
if(u.color = "WHITE") {

u.predec = s
// recursive call
DFS-visit(G, u)

}
}

// done visiting everything
s.color = "BLACK"
time = time + 1
s.ftime = time



DFS Parenthesis Theorem

White Path Theorem

Edge Classification for BFS/DFS

DFS trees only have forward and back edges, no cross edges.

BFS trees only have tree and cross edges, no forward/back edges

DFS Applications

Directed Acyclic Graphs (DAGs)

If  is a descendant of , then the interval of  is contained by the interval of , i.e.,

If  and  are on different branches, their intervals are disjoint

 is a descendant of   at the time , there is a path  along which all of the
vertices are white, except for 

This path will be all grey at 

This path will be all black at 

Traversal forest: tree/forest created from traversing a graph

Edges  from traversal forests can be one of four types
Tree edge: the edge is in the forrest
Forward edge:  is a descendant of 

Back edge:  is an ancestor of 
The same as forward edges for undirected graphs

Cross edge:  is a non-ancestor and non-descendant of 

For any edge , we have , so any forward or back edge must be a tree edge

We can check if a graph  is strongly connected by running DFS on every . If every tree has all
the vertices, then the graph is strongly connected

However, this can actually be detected with just one DFS call

Source node: a node with only outgoing edges

Sink node: a node with only incoming edegs
A DAG can have multiple sink and source nodes

Theorem: every DAG has at least one source node and one sink node



Using DFS to Determine if a Graph is a DAG

Topological Sorting

Motivation

Algorithm I - Khan's Algorithm

Cycles  back edges  grey-grey edge

If the DFS tree has no back edges, then the graph is a DAG

Algorithm: Run DFS, if DFS encounters a grey-grey edge, abort the algorithm and output "cycle
found", otherwise output "DAG" if the DFS terminates.

Suppose we have a set of tasks

For each task, some other tasks may need to be complete first
These requirements can be expressed as a DAG, where an edge from  to  means we need to
do  before  (i.e. edges represent tasks)

We wish to find an order for the tasks such that they can all be completed
A cycle exists  no topological sorting is possible

SRSN: successive removing of source node
Given a DAG, we can repeatedly remove nodes with zero-degree (and its incident outgoing
edges) from the remaining subgraph

The order of the removal of these nodes is the topological sort order

Running time: 

void topo-sort(G) { // khan's algorithm
S = []
for each vertex v {

if in-degree(v) == 0 {
S.enqueue(v)

}
}

i = 1;

while(S !== []) {
v = S.dequeue();
print(v);
i++;
for each edge [v, u] {



Algorithm II - DFS

Strongly Connected Component

Algorithm

Sorting the vertices by  in descending order will reveal a topological sort

The order may be different than algorithm I: topological sorting is non-unique

We don't actually need to use a sorting algorithm to get the nodes ordered by : we can
simply add a node to the end of an array when it turns black (a stack essentially)

Running time: 

 is the strongly-connected component of  ( ) if it is the maximal set  such that
 and  is strongly-connected

I.e. the largest strongly connected subgraph that  is a part

Naively, we can find these by running DFS on each node: 
Lemma: the graph representing the structure of the SCCs of a graph  is a DAG

Otherwise, the cycle would strongly-connected the two+ components involved

1. Run DFS on 

2. Flip 's edges to create  (i.e. we do  to the adjacency matrix)

3. Following the decreasing order of , run DFS on 

4. SCCs of  are the trees of the DFS forrest of 

This (also) finds the TS of the 

remove edge [v, u]
if in-degree(u) == 0 {

S.enqueue(u)
}

}
}

if i < n {
print("G has a cycle")

}
}



Minimum Spanning Tree (Topic 12)
Introduction (recap)

Greedy Algorithms for MST

Kruskal's Algorithm
We keep adding the smallest edges to the spanning tree that don't create a cycle

Pseudocode

Theorem: an undirected graph is a tree  it is connected and 

A graph is connected  it has a spanning tree (subgraph  of  where )

We can assign costs to edges in order to make it possible to find a minimum spanning tree: a
spanning tree with the least cost

Very applicable problem, since many situations can be modelled as graphs with weighted
edges, and finding a minimal spanning tree optimizes some aspect of the problem

Optimal substructure: For any  where  is connected and  is an MST for ,
 is an MST

Prim's algorithm: sequentially add the best-possible vertices to grow the tree
The tree is grown vertex-wise

Kruskal's algorithm: always choose the cheapest edge that doesn't cause a cycle
The tree is grown edge-wise

General MST algorithmic framework
1.  is a set of "safe" edges that are contained in some MST 

2.  is initially 

3. While , find a safe edge  and set 

T = []
for each (v in V(G)) {

Define cluster C(v) = v
}

sort edges in E(G) into non-decreasing weight order

for each (edge e = (u, v) in E(G)) {
if(C(u) != C(v)) {



Explanation

Correctness

Runtime

Start with forest  that contains all the nodes, but no edges

Keep adding edges to the graph in decreasing order of cost
If a new edge creates a cycle, don't add it

Do this until all of the edges have been considered (by definition, if an edge isn't necessary, it will
create a cycle)

Suppose  is the partial solution after examining edge . There exists an MST  which
Has all edges in 

Every edge in  but not in  is among the edges we haven't examined yet
I.e. 

When , the theorem holds trivially
, since 

IH: For , there exist an MST  such that 
Case : we don't add edge , so . This must be because it creates a cycle. By
IH, all edges of  are in , so it also creates a cycle in . Thus, it is not in the optimal
solution

Case : we do add edge 
Case :  also contains this edge; clearly adding it is optimal

Case :  does not contain this edge. This must be because it creates a cycle in
. Since Kruskal chose the smallest edge, we know there must exist an MST

created from  by adding  and removing a different edge (i.e. replacing which
edge is the break in the cycle). So, we know an MST exists that has all the edges of 
and every edge in the MST not in  hasn't been considered yet.

Defining clusters: 

Sorting:  (since the raw sort is  and )

T = [...T, e]   // union
merge clusters C(u) and C(v)

}
}

return T



So the total time is 

Useful Theorem for Kruskal Proofs

Prim's Algorithm

Pseudocode

Merging:  since we must retain the fact that the edges are sorted

Let  be a tree and  be an edge not in  (i.e. ).

The graph  must contain a cycle.

For any edge  on the cycle, the graph  is a tree

The key of each vertex is the smallest edge wait it takes to get there
If it is not adjacent to a node already in our tree, then this weight is 

We proceed by adding vertices to the tree in order of their keys
We use a priority queue

void primMST(G)

for each (v in V(G)) {
v.key = infinity
v.predec = NULL

}

// s is an arbitrary starting node (can be treated as a paramter)
s.key = 0

// Q is the set of nodes that haven't been looked at yet
Initialize a min-priority-queue Q on V using V.key

while (Q != []) {
u = ExtractMin(Q)
// finds the node with the lowest cost to connect to
for each (v neighbour of u) {

// w(u, v) is the weight of the edge between nodes u and v
// if there's a shorter way to get to the node than moving 

directly
if(v in Q and w(u, v) < v.key) {

v.predec = u
decrease-key(Q, v, w(u, v))

}



Running Time

Aside: Cuts

Extracting the minimum element and decreasing the key of an element in the priority queue is
 since the queue is implemented with a binary heap.

So, our runtime depends on how we represent the graph
Adjacency matrix: 

Adjacency list and binary heap: 
Adjacency list and Fibonacci heap: 

The minimum weight edge in every cutset of a graph belongs to its minimum spanning tree (up to
unique edge weights)

}
}



Shortest Path (Topic 13-14)

From MST to Shortest Path

Dijkstra's Algorithm

Overview

Pseudocode

Shortest-path problem: given an edge-weighted graph, find the shortest path connecting a
source  and a destination 

Subpath optimality: The shortest path between any two points on the shortest path between 
and  is a subpath of the shortest path between  and 

Metric of shortest distances: for any , ,  we have
, assuming  is undirected

Triangle inequality:  Assuming there are no negative cycles. This a
reasonable assumption, since if one of these did exist, we could just go around it over and
over to get an arbitrarily low cost

For MST, we keep connecting a node (via predecessor) to its smallest-cost neighbour

For shortest path, if we find a difference between two nodes that is smaller than the previous
ones, we update the distance values to match this, then set predecessors and decrease keys
like for MST

For each adjacent node  of 
We find the best overestimate (weight of path connecting to it)
I.e. update  for every neighbour  of 

Then, when nodes may overlap, 

This creates a BFS tree

Note that we can dequeue a node once we've found that there aren't any shorter paths
E.g. the node adjacent to the starting point of minimum weight cannot have a shorter path
going through another node by definition, so it gets dequeued after the adjacencies of the
first node have been considered



Relaxation

Relaxation property: For any , if  is only updated using , then 
always holds

 is the following code from the algorithm:

This follows from the fact that none of the weights can be negative

 cannot increase , so whenever , we don't change 

// G is the graph, G = (V, E)
// w is the weights
// s is the starting ndoe
void dijkstra(G, w, s) {

for(each v) {
v.dist = infinity
v.predec = NULL

}
// distance to self is 0
s.dist = 0

Build a Min-Priority-Queue Q on all nodes, key = dist
// Q is the set of nodes whose shortest paths we are not sure about
// while we still have nodes to consider:
while(Q != []) {

// get the closest node
u = ExtractMin(Q)
for(each v neighbour of u) {

// if we find a shorter path going through an existing 
subpath

// update to make that path the new shortest path
// this is called RELAXATION
if(v.dist > u.dist + w(u, v)) {

v.dist = u.dist + w(u, v)
v.predec = u
decrease-key(Q, v, v.dist)

}
}
??? dequeue(u)

}
}

if(v.dist > u.dist + w(u, v)) {
v.dist = u.dist + w(u, v) 

}



Correctness

Loop invariant: At the beginning of each while-loop iteration for node , we claim:

 for all  that aren't in the queue (i.e. ), i.e. nodes we aren't considering
anymore

 for all  that are in the queue (i.e. )

Runtime

We have , so the total runtime is  with an adjacency list

Drawbacks

Initialization: clearly these are true when  holds all the nodes

Termination:  will be empty, so we have found all the shortest path distances from 
Maintenance: Suppose a node  is incorrectly dequeued, i.e. dequeued when 

Let  be the last sure node before , and  is the first unsure node after  (possibly )

We have , we must have already
relaxed  in the last iteration

So  by subpath optimality and non-negative edge weights

Case 1: if  is , we have a contradiction.

Case 2: if  is not , then the next node to be dequeued should be  instead of , still a
contradiction (of )

If we are to dequeue  from , then the shortest path so far from  to  consists only of nodes
that we are sure about; we only dequeue  once a shortest path has been found

Preprocessing distance and predecessors: 

Building min-priority queue: 
Extracting min and decreasing key in the min-priority queue: 

Done  times, so  total

The for loop (in the while loop) is  for an adjacency matrix and  for the adjacency list
So, the whole while loop is  with the adjacency list

Can be reduced to  with a Fibonacci heap

With adjacency matrix, the while loop is , so the total runtime is 

Does not work with non-negative edge weights

If a weight changes, the whole algorithms needs to be re-run



Dijkstra's Algorithm for DAGs
If a graph has been sorted topologically, we already know that we don't need to "backtrack" to find a
shortest path: they must move "forward" in the DAG by definition. So, we don't need to build a priority
queue; we can just look at adjacent nodes in their natural order.

Pseudocode

Runtime

It takes  to preprocess and  to execute the for loops (since the checks happen a constant
amount of time per edge). So, the total runtime is .

Bellman-Ford Algorithm
Slower than Dijkstra's algorithm, but can handle negative edge weights and is more flexible if the
weight of an edge changes.

Idea: instead of picking the node of smallest distance sequentially, we do all of them all at once
enough times that every needed relaxation can occur

Pseudocode

for each vertex v {
v.dist = infinity
v.predec = NULL

}

s.dist = 0

for i from 1 to n-1 {
for each u adjacent to v[i] {

// relaxation: update the distance if needed
if(u.dist > v[i].dist + w(v[i], u)) {

u.dist = v[i].dist + w(v[i], u)
u.predec = v[i]

}
}

}



Runtime

The first for-loop runs in , since it executes  times and runs an  procedure on each edge
each time ( ).

Notes

The algorithm can find the shortest paths after less than  iterations, but still completes the rest of
the computation every time.

Floyd-Warshall Algorithm
Floyd-Warshall aims to solve the All-Pairs Shortest Path problem (APSP): what is the shortest path
between any two pairs of nodes in a graph?

for each vertex v {
v.dist = infinity
v.predec = NULL

}

s.dist = 0

// relax each edge n times; this accounts for all the relaxations that may be 
needed (although it does so rather inelegantly)
for i from 1 to n-1 {

for each edge (u, v) {
// recall: relax checks whether a shorter path exists
relax(u, v)

}
}

// if things are still changing, it must be because a negative cycle exist
// (which will keep decrementing weights indefinitely)
// so, we return false in this case
for each edge (u, v) {

if u.dist + w(u, v) < v.dist {
return false

}
}

return true



Idea: run Dijkstra or Bellman-Ford at each vertex (  times). This would be very slow, but improvable
with dynamic programming.

Subproblems

Subproblem: : for given vertices , find the distance of the shortest path from  to  where all the
intermediate vertices are in  (we have numbered the vertices )

Either we don't need vertex  (i.e. the same shortest path as subproblem  for ), in which case
, or we do need , in which case .

So we get the recurrence , which is dynamic-
programmable.

Runtime

Our table is  (since it's -dimensional and there are  nodes), so filling the entire table (which
requires  operations) is .

We can store this in d[i, j, k-1]

We get this by following the shortest  path, then the shortest  path
Sub-path optimality!

Base case:  or simply .

We can fill -dimensional table of  bottom-up

In comparison, running Dijkstra at each vertex is  and running BF at each
vertex is 

So, these options get worse the more edges there are (i.e. in dense graphs where ), but
better in sparse graphs



Cheat Sheet

Big O  such that 
Big Omega  such that 

Solving recurrences
Iterated sub: We keep relacing the recursive term of the equation with its definition until it
forms a pattern

Recurrence tree: draw the recurrence tree

Master Theorem (not sure if will be given)

Let  and  be constants, and let  be a function. Let  be defined on non-
negative integers by the recurrence

Then  has the following bounds

If  for some  then 
If  for some  then 

If  for some constant  and if  for some constant 
and all sufficiently large , then 



Heaps, Priority Queue, Heapsort

Finding running time
Figure out how many times each line gets run (requires using  for loops)

Loop invariant: assertion that is true before loop (initialization), during the loop (maintenance),
after the loop (termination 2) which has to stop (termination 1)
- Initialization like base case, maintenance is an implication  using what the code
actually is

A heap is a binary tree data structure, represented by an array, where the key of the child node is
smaller than that of its parent (max heap)

Max Heap Property: For every node , we have 

Array Indices for Heaps

Almost-heap: only root violates max-heap

Max-heapify: almost heap into a heap  since run once per heap layer

Building a heap: run max-heapify on all non-leaf nodes starting with the furthest root, move down
the array until the last non-leaf node. If a switch happens, run max-heapify recursively on the
parent position too (earlier in the array)



Topic 6

Priority queue: implemented using a heap

Heapsort: build array into a heap ( ), first element is in order, switch A[1] and A[n], call max
heapify on unsorted part since almost heap, keep doing this 

Quicksort overview: Divide the array into two subarrays around a pivot such that everything
before the pivot is smaller than it and everything after it is larger. Then recursively quicksort each
half. Finally, each half is combined, which is trivial since quicksort is sorted in place

QuickSort(A, p, r): 
// sorts A = [p ... r]
if(p < r) {

// A[q] is the pivot
// all elements before q are smaller, all after are larger
// note: partition both modifies A (side effect) AND returns q
q = Partition(A, p, r)
// recursive calls
QuickSort(A, p, q-1)
QuickSort(A, q+1, r)

}

// Partition subprocedure
Partition(A, p, r):

// last element of array being examined is picked as a pivot
pivot = A[r];
// "switch counter" (i is an index; counts up from start index)
i = p-1
for(j from p to r-1) { // counts up from start to second last element

// if current element is smaller than pivot, switch and increment 
counter

if(A[j] <= pivot) {
i = i+1;
swap(A[i], A[j])

}
}
// switch last element and element in the "pivot spot", as determined by
// incrementing i
// note that we compared with r when switching and incrementing, so this
// is why we can simply swap these and know the list is in the right form
swap(A[i+1], A[r])
return i+1



Greedy Algorithms

D and C again

Right-rotate: the old root becomes the right child of the new root

Left-rotate: the old root becomes the left child of the new root

An AVL tree is a BST where, for any node, we have , I.e. the heights of both
subtrees are as close as possible

We want to show that each greedy choice can replace some portion of the optimal solution, such
that this altered new solution is still optimal

Substitution property: Any optimal decision can be altered to become our greedy choices
without changing its optimality (also called the greedy choice property in CLRS)
Optimal Substructure Property: the optimal solution contains optimal solutions to subproblems
that look like the original problem

Prove with replacement argument and induction, at each point there is an optimal solution that
has the same elements as the current solution
example of greedy proof here from an exam???
Job scheduling: earliest start time first

Activity selection: earliest finish-time first

power: for even , we can reduce the number of recursive calls by saving the result of 
and squaring it. For odd , we simply call  so that we have an even recursive call
next time
Karatsuba is like divide and conquer, but is slightly more efficient with its recursive calls

We have  and 

So, 



DP

all dp examples

Graphs

BFS

Let  and , and 

Notice that , which requires one less multiplication to compute

Strassen: found 7 matrices (that each take one matrix multiplication to calculate) that can be
combined together with multiplication and subtraction in order to form the desired matrix product

So, the runtime is 

Overlapping subproblems: different branches of recursive calls complete each other's work
(repetition)

Optimal substructure: the optimal solution for the overarching problem is dependant only on
the optimal solutions for subproblems (dependency)

1. Find a recurrence relation for the problem

2. Check if the recurrence ever makes any of the same calls, and if there are reasonable amount of
different ones

What is the dependency among subproblems

3. Describe array (or I guess any data structure) of values that you wish to compute. Each value will
be the result of a specific recursive call

4. Fill the array from the bottom up* (backward induction). Solutions to subproblems will be looked
up from the array instead of being computed themselves

Bottom up: loop over all the values up to the one we want, and fill in the array slot for each
value looped over. This means we don't have to check if something is in the array because
we know it will be

Integral knapsack recurrence:

// G is a graph
// s is the starting vertex

void BFS(G, s)

for each vertex v in the graph, do



DFS

v.color = "WHITE";
v.dist = Infinity;
v.predec = NULL;

Initialize a queue Q

// start examining s because it is the first node
// add it to the queue and change color to grey
s.color = "GREY"
s.dist = 0
enqueue(Q, s)

while(Q !== []) {
u = dequeue(Q)    // remove from the queue
for each neighbour v of u {

if(v.color = "WHITE") {
v.color = "GREY"
v.dist = u.dist + 1
v.predec = u
enqueue(Q, v)   // add v to the Queue

}
}
u.color = BLACK   // done visiting the neighbours of u

}

int time  // global

void DFS(G)

// initialize graph
for each vertex v

v.color = "WHITE"
v.predec = NULL

time = 0

// visit all unvisited nodes
for each vertex v

if(v.color = "WHITE") {
DFS-visit(G, v)

}

void DFS-visit(G, s)



MST

Kruskal

Prim

// examining "first" node
s.color = "GREY"
time = time + 1
s.dtime = time

for each u, neighbour of s {
if(u.color = "WHITE") {

u.predec = s
// recursive call
DFS-visit(G, u)

}
}

// done visiting everything
s.color = "BLACK"
time = time + 1
s.ftime = time

T = []
for each (v in V(G)) {

Define cluster C(v) = v
}

sort edges in E(G) into non-decreasing weight order

for each (edge e = (u, v) in E(G)) {
if(C(u) != C(v)) {

T = [...T, e]   // union
merge clusters C(u) and C(v)

}
}

return T



SP

Dijkstra

// G is the graph, G = (V, E)
// w is the weights
// s is the starting ndoe
void dijkstra(G, w, s) {

for(each v) {
v.dist = infinity
v.predec = NULL

}
// distance to self is 0
s.dist = 0

Build a Min-Priority-Queue Q on all nodes, key = dist
// Q is the set of nodes whose shortest paths we are not sure about
while(Q != []) {

// get the closest node
u = ExtractMin(Q)
for(each v neighbour of u) {

// relaxation
if(v.dist > u.dist + w(u, v)) {

v.dist = u.dist + w(u, v)
v.predec = u
decrease-key(Q, v, v.dist)

}
}
??? dequeue(u)



or

}
}




